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Using direct numerical simulation techniques we investigate transition to turbulence 
in a boundary-layer flow containing two large-scale counter-rotating vortices with 
axes aligned in the streamwise direction. The vortices are assumed to have been 
generated by the Gortler instability mechanism operating in boundary-layer flows 
over concave walls. Full, three-dimensional Pu’avier-Stokes equations in a natural 
curvilinear coordinate system for a flow over concave wall are solved by a 
pseudospectral numerical method. The simulations are initialized with the most 
unstable mode of the linear stability theory for this flow with its amplitude taken 
from the experimental measurements of Swearingen & Blackwelder (1987). The 
evolution of the Gortler vortices for two different spanwise wavenumbers has been 
investigated. In  all cases the development of strong inflexional velocity profiles is 
observed in both spanwise and vertical directions. The instabilities of these velocity 
profiles are identified as a primary mechanism of the transition process. The results 
indicate that the spanwise shear plays a more prominent role in the transition to 
turbulence than the vertical shear, in agreement with the hypothesis originally 
proposed by Swearingen & Blackwelder (1987). The following features of the 
transition, consistent with this hypothesis, were observed. Instability oscillations 
start in the spanwise direction and are followed later by oscillations in the vertical 
direction. A two-dimensional linear stability analysis predicts that the maximum 
growth rates of perturbations associated with the spanwise profiles are greater than 
those associated with the vertical profiles. Regions of high perturbation velocity 
correlate well with the regions of high spanwise shear and no obvious correlation with 
the vertical shear regions is observed. Finally, the analysis of the kinetic energy 
balance equation reveals that most of the perturbation energy production in the 
initial stages of transition occurs in the region characterized by large spanwise shear 
created by the action of the vortices moving low-speed fluid away from the wall. Our 
results are consistent qualitatively and quantitatively with other experimental, 
theoretical, and numerical investigations of this flow. 

1. Introduction 
Counter-rotating streamwise vortices are observed in transitional and turbulent 

boundary layers and seem to play an important role in transition to turbulence and 
in the dynamics of fully turbulent boundary layer flows (Blackwelder 1983). For 
this reason understanding their dynamics is considered very important for the 
development of practical techniques to  control such flows. However, there is 
considerable disagreement concerning their origin, structure, and evolution. Good 
reviews of the present status of research on this subject and existing controversies are 
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given by Kline & Robinson (1989) and Robinson (1991). A t  least part of the difficulty 
in investigating streamwise vortices in turbulent boundary-layer flows is related to 
the fact that the mechanisms by which they are generated are largely unknown and 
in turbulent flows they occur randomly in space and time. For these reasons even the 
task of distinguishing them from the random turbulent background may be quite 
difficult. These difficulties led a number of researchers to  consider simpler ‘model’ 
flows, which capture essential features of characteristic structures thought to 
dominate the dynamics of the turbulent boundary layers but which, by virtue of 
their deterministic generation mechanisms, are not contaminated by the turbulent 
background. A good example of such an approach are studies of hairpin vortices in 
laminar boundary layers performed by Acarlar & Smith (1987 a, b ) .  

In  laminar boundary-layer flow over a concave wall, under proper conditions, 
streamwise vortices will develop due to  the imbalance between the centrifugal forces 
and the radial pressure gradient as first predicted by Gortler (1940). The Gortler 
vortices share many similarities with vortical structures found in other types of 
boundary layers as documented by Blackwelder (1983). Since their generation 
mechanism through the instability process is known and they form a deterministic, 
spatially regular pattern, they may be considered as another example of a ‘model’ 
flow which can offer an attractive alternative in investigations of the dynamics of 
counter-rotating vortices in boundary layers. 

Apart from a general interest in Gortler flow as a ‘model’ flow it is of interest on 
its own merit since the Gortler instability and a subsequent transition to turbulence 
are common phenomena in various flows involving curved boundaries, for instance 
flows over turbine blades. Gortler flow has been studied by many researchers since 
Gortler first discussed it in 1940. An extensive review of this subject given recently 
by Floryan (1991) contains almost 170 references. Most of the earlier theoretical 
research (Gortler 1940; Hammerlin 1955; Smith 1955; and Floryan & Saric 1979) 
was concentrated on the linear stability theory of this flow and determining a neutral 
stability curve. A review of earlier results on this subject was given by Herbert 
(1976). The major difficulty associated with these works was a lack of the agreement 
among the neutral stability curves derived by different investigators. This 
disagreement was resolved only fairly recently by Hall (1982, 1983) who showed that 
a unique neutral curve does not exist for Gortler flow because its stability strongly 
depends on how and where the boundary layer is perturbed. Hall also pointed out 
that the parallel-flow assumption made in the stability analyses preceding his work 
was not correct, except in the small-spanwise-wavelength limit. 

Experimental studies of Giirtler flow were concentrated for the most part not on 
the emergence of the vortices caused by the primary instability of the laminar 
Blasius boundary layer but on the investigation of the evolution of the flow with the 
vortices already present. This is evident from the summary of experimental data of 
several investigators by Swearingen & Blackwelder (1987) who compared the data 
with the theoretical stability curves of both Floryan & Saric (1979) and Hall (1983). 
Most of the experimental points fall into the region which is unstable according to 
both theories. One of the first experimental investigations of Gortler flow was 
undertaken by Liepmann (1945) and its goal was to determine the conditions for its 
transition to turbulence. It is probably fair t o  state that  this is still the principal goal 
of research in this area. The first stage in the transition process are deformations of 
the boundary-layer velocity profile by the vortices. Such deformations are well 
documented in the experiments of Tani (1962), Wortmann (1969), Tani & Aihara 
(1969), Bippes (1972), Winoto & Crane (1980), and Swearingen & Blackwelder (1987). 
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A t  this initial stage of transition the flow is steady and when visualized in the plane 
parallel to the wall using a smoke-wire technique i t  is characterized by the 
accumulation of smoke between the vortices where the measured streamwise velocity 
is lower than in the surroundings (e.g. Swearingen & Blackwelder 1987). This low- 
speed region is located where the vortices induce the maximum vertical flow away 
from the wall, the upwash region. When the flow is visualized in the plane normal to 
the wall and to the flow direction it exhibits a characteristic structure of a 
‘mushroom ’ (Peerhossaini & Wesfried 1988) with smoke concentrated between the 
vortices forming the ‘mushroom’s’ stem and its hat formed by smoke spread in the 
upper parts of the boundary layer by the vortical flow turning to the sides. 
Subsequent evolution of the flow involves spanwise oscillations of low-speed streaks 
clearly visible in planes parallel to  the wall (Rippes 1972; Swearingen & Blackwelder 
1987) as well as in planes normal to  the wall (Peerhossaini & Wesfried 1988). At this 
stage of transition Swearingen & Blackwelder (1987) observed that the spanwise 
oscillations are often accompanied by the appearance of horseshoe vortices forming 
over the low-speed streaks. After a distance equal to several streamwise wavelengths 
of the spatial waviness associated with the oscillations, flow becomes turbulent. 

The appearance of the waviness and the horseshoe vortices in the experiments is 
usually attributed to secondary instabilities of the boundary-layer flow modified by 
the action of the vortices. Several theoretical investigations of these instabilities were 
undertaken recently. The secondary instability of Gortler flow presents a formidable 
mathematical problem since the base flow has three non-vanishing components of the 
velocity which all depend on both spanwise and normal-to-the-wall coordinates, and 
may also depend weakly on the streamwise coordinate if the boundary-layer growth 
is taken into account. For this reason various simplifications of the problem are 
introduced. Since the secondary instability wavelength observed experimentally is 
on the order of the boundary-layer thickness non-parallel effects are usually 
neglected in the analysis. After the dependence on the streamwise coordinate is 
eliminated the various analyses of this problem differ mostly in the form of the 
assumed base flow. Park & Huerre (1992) performed a secondary instability analysis 
of the Gortler flow in a boundary layer with an asymptotic suction velocity profile 
which is parallel by definition. The base flow was obtained from temporal two- 
dimensional numerical simulations. Y u & Liu (1991) also investigated the stability 
of the flow obtained in two-dimensional simulations of the Gortler vortices evolving 
in the Blasius boundary layer. These simulations, performed by Sabry & Liu (1988, 
1991), assumed a temporally growing boundary layer and the correspondence 
between time in the simulations and the locations in the spatially growing boundary 
layer in experiments was established using a convection velocity. To our knowledge, 
Hall & Horseman (1991) are the only ones who used as a base flow results of nonlinear 
evolution of Gortler flow in a spatially growing boundary layer (Hall 1988). All these 
investigations identify two distinct modes of the secondary instability : a sinuous 
mode for the perturbation pattern which is antisymmetric about the low-speed 
region, and a varicose mode for the pattern which is symmetric about the low-speed 
region. These are also the instability modes observed in the experiments. 

In the above secondary instability investigations the base flow is generated by 
performing numerical simulations of the perturbed laminar boundary layer. In  the 
simulations of Hall (1983, 1988) the perturbation is introduced a t  some location in 
the boundary layer and is advanced in the streamwise direction using the system of 
time-independent partial linear parabolic equations, which are derived from the full 
Navier-Stokes equations, until the Gortler flow with the appropriate strength 
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develops. In  simulations of Park & Huerre (1992) and Sabry & Liu (1988, 1991) the 
boundary layer is assumed to be parallel and it is perturbed by the Gortler vortex 
system obtained from the linear stability analysis. Subsequently, two-dimensional 
Navier-Stokes equations are advanced in time until the evolved flow shows 
characteristic features of the Gortler flow observed in experiments. Both approaches 
reproduce qualitatively, and in many instances also quantitatively, the experimental 
evolution of the Gortler flow in the steady flow regime, where the simplifications of 
the Navier-Stokes equations made are justified. For instance, all these simulations 
predict generation of the inflexional profiles of the streamwise velocity, development 
of the low-speed streaks and ‘mushroom’ structures in planes normal to the wall, etc. 
However, such simulations cannot be extended into the transitional regime, in which 
the flow is both unsteady and three-dimensional. 

In this work we report the results of the direct numerical simulations of full three- 
dimensional Navier-Stokes equations for Gortler flow experiencing transition to  
turbulence. The direct numerical simulation technique is thus extended to  a regime 
which was previously investigated using only experimental and theoretical methods 
and we expect that our results will provide a useful database complementing those 
obtained using different approaches. The purpose of our work is to develop an 
efficient numerical code capable of modelling three-dimensional boundary-layer 
flows over concave walls and to investigate the physics of such flows, in particular the 
mechanisms of transition to  turbulence. One of the main goals is to assess the relative 
importance to the transition process of the inflexional profiles of the streamwise 
velocity in the normal and the spanwise direction. Classical (and casual) explanations 
of this process in bounded flows containing counter-rotating vortices attribute it to 
shear-layer instabilities occurring on the inflexional profiles normal to the wall 
induced by the vortices. Thus it came as a surprise when Swearingen & Blackwelder 
(1987) reported that in the transition process the spanwise inflexional profiles of the 
streamwise velocity may be more pronounced than the normal profiles and may be 
responsible for triggering the transition. If the spanwise shears also play an 
important role in the fully turbulent flows this fact may require significant changes 
in the classical Reynolds decomposition used in describing turbulent boundary 
layers. This is because the classical description assumes that the boundary layer is 
statistically homogeneous in the spanwise direction and thus eliminates the turbulent 
energy production mechanism by the spanwise shears. The transitional and weakly 
turbulent Gortler flow is a useful model which allows the testing of’ various methods 
of description of the wall-bounded flows containing streamwise vortices and will be 
used here for this purpose. 

2. The numerical method 

The vorticity form of the Navier-Stokes equations for incompressible flow is 
2.1. Basic equations 

aulat = u x w - vnIp + vv2u, 
V . u  = 0, 

where u is the velocity, w = V x u is the vorticity, p is the density, 17 = p + kpu2 is the 
pressure head, and v is the kinematic viscosity. 

Equations ( 1 )  and (2) are transformed into a natural curvilinear coordinate system 
for the flow over a curved boundary with radius of curvature R. The system of 
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coordinates is chosen such that x is the ordinate along the curved boundary, z is the 
ordinate in the direction normal to the boundary, and y is in the spanwise direction. 
Equations (1) and (2) have the following form in this curvilinear coordinate system : 

h 
1 ; ( :  = v  -aXv-avu ) ( h  -w azu--a,w---u 

K 

-v(a,w-azW) 

K 

1 K 
-axu+a,v+a,w--w h h = 0, (6) 

where ( u , v ,  w) = u,  K = 1/R is the curvature of the boundary, h = 1 - K X ,  and 
derivatives with respect to x, y, and x are denoted by a,, a,, arid a,, respectively. 

2.2. Computational procedure 
Equations (3)-(6) are solved using a modified version of the semi-implicit, 
pseudospectral numerical code FLOGUN developed originally by Orszag & Hells 
(1980) for the simulation of channel flows. A detailed review of pseudospectral 
techniques used in computational fluid mechanics is given by Gottlieb, Hussaini & 
Orszag (1984) and Canuto et al. (1988). 

The numerical code employs the fractional step method after regrouping equations 
(3)-( 6) as follows : 

at a i( h h “ 1  ( :2 G 1 11 1 -w= u a,u---aXw--u - V ( a , W - a , V ) - V K  --a u+ - - I  aZw 
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The right-hand sides of (7)-(9) are written as sums of nonlinear, linear, viscous, and 
pressure terms (each within braces) which provide four differential operators used in 
the fractional step method, consisting of four separate steps. The last step involves 
solution of pressure and incompressibility equations, resulting in a divergence-free 
velocity field after a full sequence of the fractional steps is applied. The splitting 
errors were reduced using modified boundary conditions suggested by Fortin, Peyret 
& Temam (1971) and Zang & Hussaini (1986). 

The form of (3)-(6) is affected by the curvature of the wall through the appearance 
of various terms and factors containing K and h(z)  = 1 - KZ. For numerical stability 
reasons, the viscous term should be treated implicitly. However, the presence in the 
equations of the factor h ( z )  dependent on the variable z prevents in this case the use 
of efficient methods developed for solutions of Poisson and Helmholtz equations in 
Cartesian coordinates. To circumvent this difficulty the viscous term is rewritten as 
in (7)-(9), resulting in a form which allows the application of the efficient numerical 
solvers a t  our disposal. The remaining portions of the original viscous term, which 
can be diagonalized in the spectral representation, form additional linear terms and 
those that cannot be diagonalized are included into the nonlinear terms. 

We assume that the boundary layer is parallel, which allows the application of 
periodic boundary conditions in the horizontal directions. In  these directions a 
spectral Fourier representation is used in the numerical method. Correspondingly, 
the collocation points in the physical space are equally spaced. I n  the vertical, non- 
periodic direction we use mapping from the channel flow t o  the boundary-layer flow 
geometry : 

(11)  
(12) 

x* (s )  = cos ( I T S ) ,  - 1 < s 6 1, 
x ( s )  = ib(1 +z*) /[a-$( I  +z*)$ .  

The mapping parameters are chosen as a = 1.0225 and b = 14.0625 which results in 
0 d x < 93.75, equivalent to about fifteen Blasius boundary-layer thicknesses, 6 = 
6.02, in the non-dimensional units used here. The gridpoints in the vertical direction 
are Chebyshev collocation points obtained from (11) and (12) using uniform 
increments in the variable s. This allows efficient evaluation of z-derivatives using the 
Chebyshev collocation method. 

Using Fourier expansions in the horizontal directions, the quantities in physical 
space and spectral space are related through the following relations : 

(13) 

where k, = 27cm/L,, k, = 2nn/L, are the horizontal wavenumbers, m and n are 
integers, and L, and L, give the size of the computational box. This mixed 
Fourier-physical space representation for the horizontal and vertical directions, 
respectively, is used as a primary representation for all dependent variables and the 
equations in the numerical program. 

2.3. Tests of the  numerical code 
A standard test of such a numerical code is the  comparison between the growth rates 
predicted by the code and the growth rates calculated from the linear stability 
theory. Following the original analysis of Gortler (1940) and Hiimmerlin (1955) for 
parallel Gijrtler flow we introduce the velocity perturbations in the form 

dz, y, 2 ,  t )  = c c 4 k Z >  k,, 2 ,  t )  exp (ik, x) exp (ik, y), 
Irnl<M Inl<N 

u = U,(z) + u l ( z )  cos ( ~ y )  ept, 
v = wl(z) sin ( ~ y )  ePt. 

w = wl(z) cos ( ~ y )  ept, 

(14) 
(15) 
(16) 
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a 

0.300 
0.300 
0.300 
0.300 
0.200 
0.243 
0.276 

Q PI,, 
2.40 +0.004800 
1.60 +0.003660 
0.80 +0.000739 

1.00 +0.002089 
5.12 +0.005557 
6.00 +0.006 131 

0.30 -0.006794 

P N S  

+ 0.004779 + 0.003 634 
+0.000701 
- 0.006 874 
+ 0.002 056 + 0.005 541 + 0.006 116 

E 

+ 0.0044 + 0.0071 
+0.0510 
+ 0.0120 
+0.0160 + 0.0029 + 0.0024 

TABLE 1. Comparison between growth rates of Gortler flow calculated from the linear stability 
theory and predicted by the Navier-Stokes solver 

where a = 2n/h is a (dimensional) wavenumber in the spanwise direction and h is a 
corresponding wavelength, /3 is the temporal growth rate, U,(Z) is the mean flow, 
assumed here to be the Blasius profile, and u l ( z ) ,  ol(z), and wZ(z) are the perturbation 
amplitudes of the Gortler flow. 

For parallel flow independent of the streamwise coordinate z the Navier-Stokes 
equations (3)-(6) simplify to 

1 
R-Z 

U2 
Wt +vw, -k ww, +- = WYY + w,, -- 

1 
R-z  v,+w,--w = 0. 

Substituting (14)-( 16) into (17)-(20) and linearizing the equations leads to the 
following linear eigenvalue problem for the amplitudes u l ( z ) ,  ol(z), and wl( z ) ,  which 
are the eigenfunctions, and the growth rate P ,  which is the corresponding eigenvalue : 

1 dw, 
E dz 211 = ---- 

This eigenvalue problem is solved using a standard solver provided by a 
mathematical library. The governing non-dimensional control parameter i s  Gortler 
number, G = (U,B/v)(B/R)P, where B is the momentum thickness of the boundary 
layer and U, is the free-stream velocity. The growth rates PLT calculated from the 
linear theory for different values of Gortler number and non-dimensional wave- 
numbers a: = 2n/h are compared in table 1 with the growth rates pNs obtained from 
the full Navier-Stokes simulations initialized with the most unstable mode of the 
linear theory for a given G and a. Both sets of the results agree up to four figures after 
the decimal point with the relative error c = (P,, --PLT)/PLT varying between 0.2 % 
and 5 YO, with the largest relative errors for the smallest growth rates. The relative 
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errors in the growth rates obtained by Orszag & Kells (1980) using their numerical 
code ts simulate Tollmien-Schlichting waves in plane Poiseuille flow and plane 
Couette flow are of the same order of magnitude as errors obtained here. An 
additional test of the code was made by initializing the three-dimensional velocity 
field with the velocity components v and w as random numbers with a Gaussian 
distribution and a small amplitude. The Gortler number was Ci = 2.71 and the non- 
dimensional wavenumber was a = 0.0664, corresponding to the unstable state 
according to t,he linear theory. After about 500 time steps this initially random 
velocity perturbation began a process of self-organization which after additional 500 
time steps resulted in a pattern of streamwise Gortler vortices. Thus the Gortler 
vortices are generated naturally by the numerical code. 

3. Results of the numerical simulations 
3.1. Comparison with the experiments 

Two complete numerical simulations of a three-dimensional transition process in the 
Gortler flow were performed. For the comparison with the experimental results of 
Swearingen & Blackwelder (1987) we used values of the simulation parameters 
consistent with their experiment in which the radius of the wall curvature R was 
3.2 m and the free streamwise velocity U, was 5 m/s. The initial condition in our 
simulations is a superposition of a Blasius mean flow and the most unstable mode of 
the linear stability theory for a parallel Gortler flow (see 52.3). The amplitude of the 
initial Gortler vortices, 0.167U0, and the initial Gortler number, 4.985, in the 
simulations are equal to the experimental values quoted by Swearingen & 
Blackwelder (1987) at the location X ,  = 60 cm from the leading edge. To simulate 
background noise present in the experiments a random velocity perturbation was 
added to the initial velocity field. The amplitude of the random component varied in 
x as ( z / & ) ~  exp ( - ( Z / S ) ~ ) ,  consistent with the form of the velocity perturbation used by 
Hall (1983) in his stability analysis of Gortler flow. The maximum value of the 
amplitude, attained at x = 0.766, was 0.5% of U,. Our computational domain is a 
rectangular box. For one simulation, hereafter referred to as run A, the box has the 
size 2.2  cm in the x-direction, 2.3 cm in the y-direction, and 24.85 em in the z- 
direction. For the other, hereafter referred to as run B, the box size is 2.0 ern in the 
x-direction, 1.8 em in the y-direction, and 24.85 em in the z-direction. Two values of 
the spanwise wavelength, 2.3 cm and 1.8cm, were used; the former, run A, 
corresponding to the average spanwise wavelength observed in the experiments and 
the latter, run B, corresponding to the distance between two low-speed regions a t  the 
location where the detailed data were recorded in the experiments. The dimension of 
the computational box in the vertical direction was chosen to be much larger than 
the boundary-layer thickness but small enough to have an adequate spatial 
resolution in this direction with 129 mesh points used. The maximum value of the 
displacement thickness in the simulations was at most 1 cm so that the first condition 
is satisfied. The dimensions of the box in the streamwise direction 5 were chosen to 
accommodate one wavelength of the secondary instability mode observed in the 
experiments, usually between 2 and 2.5 cm. To maximize the numerical resolution 
with a finite number of mesh points we tended to choose values of this parameter 
from the lower end of the above range. The maximum resolution used in each 
horizontal direction was 64 collocation points. 

Because of the parallel-mean-flow assumption the boundary layer in the 
simulations grows in time through viscous diffusion. In  the experiments the 



Transition lo turbulence in Gortler jloui 

(6) 

275 

z 
s 

Y Y 
FIGURE 1. St.ructure of the  velocity field in laminar Giirtler flow. (a) Streamlines of the velocity in 
the (y, z)-plane (run A) .  ( b )  Iso-contours of the streamwise velocity u in the (y, z)-plane (run A ) .  

boundary layer grows with increasing distance from the leading edge, also because 
of the action of viscosity. In  order to compare the numerical results for the simulated 
time-evolving flow with the results obtained experimentally for the spatially 
evolving flow it  is standard practice to introduce a convection velocity U, which is 
used to convert temporal data into spatial ones. The convection velocities used in our 
work are U, = 0.60U0 and U, = 0.64U0 for run A and run B, respectively. These 
values of the convection velocities provide good agreement, between both sets of data 
in the laminar two-dimensional regime but may be too large in the transitional and 
the turbulent regime. I n  what follows X denotes the distance of the computational 
box from the leading edge converted from the time in the simulations using the 
convection velocity U,. The coordinate in the streamwise direction within the 
computational box is denoted by x. 

There is no one-to-one correspondence between temporally evolving flows in the 
numerical simulations and spatially evolving flows in the experiments and 
comparisons between them must be made with caution. We cannot expect to 
reproduce exactly the experimental results in our simulations but we hope that the 
process of breakdown of streamwise vortices in wall-bounded flows has universal 
features which will be present in the experiments as well as in the simulations. 
Indeed, the secondary stability analyses performed with different assumptions about 
the detailed structure of the Gortler vortices and discussed in the Introduction all 
seem to provide very similar results concerning the transition. We may thus be 
justified in our expectations of identifying the important features of the transition 
process even without one-to-one correspondence between the simulations and the 
experiments. 

The structure of the velocity field in the laminar regime X = 40-90 om is shown in 
figure 1 (a) as a streamline plot in the plane normal to the wall and to the streamwise 
direction. The counter-rotating vortices pump fluid with a low streamwise velocity 
away from the wall creating the characteristic ‘mushroom’ st,ructure of the iso- 
contour of the streamwise velocity shown in figure 1 ( b )  and reported by many other 
investigators. In  this regime the flow is two-dimensional, with all quantities 
depending only on the normal and spanwise coordinates, but all three components of 
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FIGURE 2 .  Streamwise evolution of the r.m.8. amplitude of the Giirtler vortices U, (run B) : 
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FIGURE 3. Streamwise evolution of the boundary-layer displacement thickness measured in the 
simulations at a selected (z, y) point in the peak region (solid curve) and in the valley region (broken 
curve), and corresponding experimental points from Swearingen & Blackwelder (1987) (A, peak; 
0, valley) : (a)  run A, (b )  run R. 

the velocity are non-zero. The flow contains a low-speed region of streamwise 
velocity in the upwash region between the vortices and a high-speed region in the 
downwash region, in experiments referred to as a peak region and a valley region, 
respectively. 

The r.m.s. value of the amplitude of the Gortler vortices in the simulations is 
defined as 

and its streamwise evolution is shown in figure 2 for run B. A corresponding quantity 
measured in the experiments of Swearingen & Blackwelder (1987) was determined as 
the maximum r.m.s. amplitude of the spanwise variation of the u-component of the 
velocity for each downstream location X and is also plotted in figure 2. In view of the 
assumptions made to convert quantities from the simulations of the temporally 
evolving flow into quantities for the spatially evolving flow the comparison between 
both sets of data must be considered as very good. 
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FIGURE 4. Streamwise evolution of the vertical gradient of the streamwise velocity at the wall 
measured in the simulations at a selected (5, y) point in the peak region (solid curve) and in the 
valley region (broken curve), and corresponding experimental points from Swearingen & 
Blackwelder (1987) (A, peak; 0, valley): (a)  run A, ( b )  run B. 
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FIGURE 5.  Streamwise evolution of the quantities averaged over lines in the x-direction within the 
computational box for run B (compare with figures 3 and 4 ) :  (a)  boundary-layer displacement 
thickness, ( b )  vertical gradient of the streamwise velocity at the wall. Symbols as in figures 3 and 4. 

The streamwise evolution of the boundary-layer displacement thickness and the 
evolution of the vertical gradient of the streamwise velocity, both recorded a t  two 
fixed (x, y) locations a t  the wall, one in the peak and the other in the valley region, 
are shown in figures 3 and 4, respectively, where they are compared with the 
experimental results of Swearingen & Blackwelder (1987). The displacement thickness 
grows in the low-speed region and decreases in the high-speed region as the flow 
develops in the streamwise direction. The displacement thickness may become 
greater by one order of magnitude in the low-speed region than in the high-speed 
region. For comparison, the Blasius boundary-layer thickness 6 for a corresponding 
flow without vortices would be almost constant in the same range of streamwise 
locations X. More precisely, under the same conditions the Blasius boundary-layer 
thickness S grows from 0.92 to 1.08 em as X varies from 80 to 110 em. In  both runs 
at  a distance about 90-100 cm from the leading edge, the displacement thickness in 
the low-speed region reaches its highest value and starts to decrease. The quantities 
computed as instantaneous values at the given wall locations show a large degree of 
variation toward the end of the runs. This indicates the beginning of transition to 
turbulence. The results of averaging these quantities in the x-direction within our 
computational box with y fixed in the peak and valley regions is shown in figure 5 
for run B. At the end of the simulation such averaged quantities have almost the 
same values in both the low- and high-speed regions and the flow is weakly turbulent. 
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Comparison of figures 3 (a) and 3 ( b )  reveals that  the flow transitions to turbulence a t  
X z 120 cm in run A and a t  an earlier location, X = 100 em, in run B. Also, the 
maximum value of the displacement thickness in the low-speed region reached in 
run A ( 1  em), exceeds the maximum reached in run B (0.85 cm). After reaching the 
maximum the displacement thickness begins to decrease. I n  run B this decrease is 
associated with the appearance of unsteadiness and three-dimensional effects in the 
flow but in run A even after the displacement thickness curve begins to turn down 
at  X z 105 cm the flow remains steady and two-dimensional until X x 120 cm. 
Interestingly, this effect of the turning down of the boundary-layer displacement 
thickness in the low-speed region is also predicted by purely two-dimensional 
simulations of the Gortler flow performed by Sabry 81 Liu (1988). These results 
indicate that the conventional explanations of this effect, ascribing it to the 
appearance of unsteadiness and three-dimensionality in the flow associated with 
the transition to turbulence cannot hold universally for all spanwise wavelengths 
of the vortices. 

It seems that it may be possible to  attribute this effect entirely to the existence of 
two-dimensional Gortler vortices. Near the leading edge the Cxortler vortices 
pump vertically the low-speed fluid away from the wall in the peak region and push 
the high-speed fluid toward the wall in the valley region. Therefore the boundary- 
layer displacement thickness grows in the peak and decreases in the valley region. 
However, we may expect that after sufficiently long time the Gortler vortices will 
begin to transfer the high-speed fluid, which accumulates in the valley region, to  the 
peak region by pushing it horizontally near the wall towards the convergence zone 
between the vortices. This will result in an increase of the streamwise velocity of the 
fluid near the wall in the peak region (see figure 7) ,  and a corresponding decrease of 
the displacement thickness a t  this streamwise location X .  

To support the above argument the following estimate of the location of the 
turning-down point can be made. Since the initial amplitude of the streamwise 
velocity of the Gortler vortices in the simulations is 0.167U0, and it increases almost 
linearly to 0.424U0 a t  the turning-down point, the average amplitude in this region 
is about 0.3U0. Tn laminar Gortler flow the amplitudes of spanwise and vertical 
velocities are one order of magnitude less than that of the streamwise velocity. 
Therefore an estimate of their amplitude is about 0.03U0. For the experimental value 
of the free-stream velocity U, = 5 m/s this last estimate provides the amplitude of 
the velocity V, in the plane perpendicular to the streamwise direction of about 
15 cm/s. The initial streamwise location in the simulations measured from the 
leading edge is X, = 60 em, and the corresponding Blasius boundary-layer thickness 
IS is 0.8 cm. We estimate the distance 1 that  the high-speed fluid from the outer parts 
of the boundary layer must travel to enter the low-speed region near the wall in the 
upwash region as the sum of IS and the half the spanwise wavelength, A, = 0.9 cm 
for run B, giving 1 z 1.7 cm. Thus the time needed for this process is t o  occur t E 

Z/V, = 0.11 s. Since the convection velocity U, in the run B is 0.64U0 = 320 cm/s, 
the location of the point where the displacement thickness in the low-speed region will 
begin to decrease can be estimated as X = X ,  + U, t z 95 cm, in fairly good agreement 
with the simulation results. We thus conclude that the observed initial growth and 
the subsequent decrease of the boundary-layer thickness in the peak region can be 
attributed to  the action of the purely two-dimensional Gortler vortices. 

The above discussion reveals that all qualitatlive features as well as many 
quantitative features of the flow observed in experiments are properly reproduced by 
the simulations. 
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FIGURE 6. Iso-contours of the streamwise velocity u a t  the streamwise location X = 98.3 cm and 
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FIGURE 7 .  Profiles of the streamwise velocity in the vertical direction z in the low-speed region a t  
different locations from the leading edge: (a)  X = 64 cm, ( b )  94 cm, (c) 100 cm, ( d )  109 cm (run B). 
In ( c )  experimental results of Swearingen & Blackwelder (1987) and also plotted ( x ). 

3.2. The evolution of the streamwise velocity field 
Figure 6 shows iso-contours of the streamwise velocity u in the plane normal to the 
flow direction at the streamwise positionX = 98.3 cm obtained in run B. Also, in this 
figure we have marked the locations of points and cuts where various physical 
quantities were recorded in the simulations and are plotted in this and in the 
following sections. 

Profiles of the streamwise velocity in the vertical direction z taken in the low-speed 
region at  different locations X from the leading edge are shown in figure 7 .  Also, for 
the location X = 100 cm the corresponding experimental results of Swearingen & 
Blackwelder are plotted in this figure. The pumping action of the counter-rotating 
vortices gradually generates an S-shaped profile with two inflexional points in the 
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u/ uo 
FIGURE 8. Profiles of the streamwise velocity in the vertical direction z a t  different spanwise 

locations y :  (a) y = 0.00 cm, (6) 0.37 em, (c) 0.59 cm, ( d )  0.90 cm (X  = 96 cm, run B). 

regions of intense local horizontal shear layers. These regions move upwards and the 
associated shear strengths increase with increasing distance from the leading edge. 
The inflexional profiles in the vertical direction are observed not only in the low- 
speed region between the vortices, but in any vertical cut passing through the 
‘mushroom’ region as seen in figure 8 which shows the velocity profiles at  the same 
location X from the leading edge but different spanwise positions y. However, the 
vertical shear au/& has its maximum in the low-speed region between the vortices. 
A t  the later stages of the flow evolution the appearance of turbulence decreases the 
intensity of these shear layers. 

Streamwise velocity profiles in the spanwise direction y obtained by cutting 
the velocity field from run B at different z-locations are shown in figure 9. At z = 
1.54 cm z 1.58, where 8 is the Blasius boundary-layer thickness, the streamwise 
velocity is essentially uniform and equal to the free-stream velocity U,. As the wall 
is approached from above, the velocity profiles gradually change and become similar 
to two-dimensional wake profiles. The velocity deficit in the central peak region is 
caused by the Gortler vortices moving fluid with low streamwise velocity away from 
the wall. On the other hand, in the side valley regions the Gortler vortices push the 
high-speed fluid from the upper parts of the boundary layer towards the wall and in 
these regions the streamwise velocity is equal to the free-stream velocity [lo for all 
z-locations of the spanwise cuts considered in figure 9. At larger distances X from the 
leading edge some of these plots exhibit local minima on either side of the central 
minimum. They are caused by the Gortler vortices which, after moving the low-speed 
fluid vertically from the wall, begin to move it to the sides and eventually begin to 
return i t  towards the wall. All these wake-like velocity profiles have inflexional 
points which are associated with the presence of the local, vertically oriented shear 
layers. In the initial stages of the simulations, the intensity of these shear layers 
intensifies with time. However, similarly to the case of the horizontal shear layers 
associated with the inflexional velocity profiles in the vertical direction, a t  the later 
stages of the evolution the intensity of the vertical shear layers is decreased by the 
appearance of turbulence. 

The generation of such convolved streamwise velocity fields by the counter- 
rotating vortices in boundary layers was noted in almost all previous works on the 
subject and our results are no exception. However, it  may be important to note that 
despite such a qualitative agreement between different investigations, the quan- 
titative agreement not always is good. For instance, in calculations of Sabry & Liu 
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1ocationsX = 89, 100, and 109 om, and at  different vertical locations z :  (a) z = 1.54 cm, ( b )  1.24 cm, 
(c) 1.03 cm, (d) 0.74 cm, ( e )  0.51 cm (run B). 

(1991) the velocity profile in the vertical direction in the low-speed region a t  X = 
100 cm is much iess distorted than observed experimentally and in our simulations 
(figure 7) .  Such differences are probably caused by the assumptions underlying these 
investigations e.g. two-dimensional us. three-dimensional formulation, use (or 
neglect) of initial random forcing, differences in the assumed convective velocities. 

3.3. Time series and stability analysis 
The time series of the spanwise and the vertical components of the velocity recorded 
a t  several points on a vertical line in the low-speed region in run B are shown in 
figures 10 and 11.  The initial time t = 0 s in these figures corresponds to the 
streamwise location from the leading edge X = 85.5 cm. Initially, a t  all x-locations 
the spanwise velocity component v is zero. The vertical velocity component w is also 
constant, but not necessarily zero, since this is the upwash region. Near time t M 
0.03 s,  corresponding to the locationX x 96 cm from the leading edge, the oscillations 
in spanwise velocity records begin. The first oscillations in the vertical velocity 
records are observed a t  the later time, t % 0.04 s, corresponding to the location X M 
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(y = 0.90 cm, run R).  

99 ern from the leading edge. In  both cases, however, the oscillations are observed 
earlier at  z-locations closer to the wall than a t  locations further away from the wall. 
For instance, in figure 10 we observe about 0.01 s delay, equivalent to a distance of 
more than 3 ern in the streamwise direction, between the start of the oscillations at 
x = 0.51 em and at z = 1.54 em. We therefore conclude that in this run the spanwise 
oscillations in the low-speed region start earlier than the vertical oscillations, and the 
oscillations in the inner region precede the oscillations in the outer regions of the 
boundary layer. 

After the start of the oscillations their amplitude gradually increases and, in at  
least several plots, the observed time series pattern is fairly repeatable for a few 
oscillation periods. By counting numbers of peaks present in a given time interval in 
the time series with a distinct repeatable pattern we can get an estimate of the 
frequency of these oscillations. The observed frequency of the oscillations of 
the spanwise velocity component v is about 200 Hz and the observed frequency of 
the oscillations of the vertical velocity w is approximately twice as large, i.e. about 
400Hz. Similar time series of the vertical velocity were also taken at spanwise 
locations away from the low-speed region and are shown in figure 12. In  
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contradistinction to the previous case the frequency of the oscillations read from this 
figure is about 200 Hz and is the same as that for the spanwise velocity. The physical 
reasons for different frequencies of the vertical velocities observed in the low-speed 
region and away from it will be explained in $3.4. 

The oscillations in the velocity traces for the transitional Gortler flow have also 
been reported in experiments of Bippes (1972) and Swearingen & Blackwelder (1987). 
In  particular, the frequency of the oscillations in the outer region recorded by 
Swearingen & Blackwelder (1987) is about 130 Hz. Our numerical simulations do not 
predict this frequency. Possible reasons for this discrepancy will be given below. 

In  the last subsection we noted that the Gijrtler vortices interacting with the 
boundary-layer flow in the two-dimensional regime deform the surface u ( y ,  z )  of the 
streamwise velocity such that the inflexional velocity profiles of the streamwise 
velocity u are observed in the one-dimensional cuts through this surface. In general, 
such a velocity field will be inviscidly unstable. Indeed, recent studies of the 
secondary instabilities of Gortler flow (Park & Huerre 1992; Yu & Liu 1991 ; Hall & 
Horseman 1991) properly identify main features of the transition observed in the 
experiments. Since the base flow in these stability analyses has three non-vanishing 
components of velocity, which all depend on two coordinates, y and z ,  the stability 
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FIGURE 12. As figure 10 but for the vertical velocity w recorded away from 

the low-speed region (y = 0.59 cm). 

analyses present a fairly complicated mathematical problem. A simpler approach, 
though more difficult t o  justify, is to investigate the stability of the one-dimensional 
streamwise velocity profiles obtained as cuts through the two-dimensional surface 
u(y ,  x ) .  Such an approach was used by Sabry, Yu & Liu (1990) with some success in 
predicting frequencies of the secondary instability oscillations that were in fair 
agreement with the experimental results of Swearingen & Blackwelder (1987). 

Here, we apply this approach to the velocity fields obtained in the simulations. 
Our goals are, on one hand, to assess the applicability and the limitations of such a 
simplified stability analysis, and, on the other hand, to establish the viability of a 
postulated link between the observed process of transition and the instabilities of the 
inflexional velocity profiles. Direct numerical simulations are particularly useful in 
making such assessments. In  direct numerical simulations both the transition process 
and the velocity profiles can be accurately documented and any relation between 
them can be established in a more self-consistent manner than in comparing 
theoretical results with experiments, where the assumed theoretical velocity profiles 
usually differ in some respects from the experimental ones. To proceed with the 
analysis we must assume that the timescale for the instabilities of the inflexional 
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FIGURE 14. (a) A growth rate and ( b )  a frequency 11s. wavelength calculated for a profile of the 
streamwise velocity in the spanwise direction a t  z / S  = 0.5 where S z 1 cm (X  = 98 cm, run B). 

profiles is much smaller than that for the primary Gortler flow, i.e. the Gortler flow 
is assumed to be quasi-steady for the purpose of the stability analysis. This 
assumption will be subsequently confirmed by the results of the analysis. We 
performed a standard stability analysis employing the Orr-Sommerfeld equation 
applied to various steady one-dimensional vertical and spanwise velocity profiles 
obtained in the simulations. The Orr-Sommerfeld equation was solved with periodic 
boundary conditions for the spanwise profiles and homogeneous (zero) boundary 
conditions for the vertical profiles. In  all reported cases the velocity profiles were 
determined from run B a t  distance X = 98 cm from the leading edge, just before 
transition begins. 

Figure 13 shows a growth rate and a frequency of an unstable mode as a function 
of its streamwise wavelength, calculated for the streamwise velocity profile obtained 
from a cut in the vertical direction in the low-speed region. The same quantities are 
calculated for the velocity profile in the spanwise direction a t  z / S  = 0.5 and are 
plotted in figure 14. The maximum growth rates for the vertical and spanwise profiles 
are 282 s-l and 340 s-l, respectively. The growth rate of the primary Gortler 
instability, calculated using the method of $2.3, is 20 s-l. Therefore, the assumption 
of quasi-steady Gortler flow used in the analysis is applicable. The finite size of the 
computational domain in the streamwise direction imposes restrictions on allowable 
wavenumbers of the unstable modes. In the simulations only modes with wavelength 
equal to the size of the computational box in the x-direction (2.0 cm) were observed. 
For such a wavelength the frequencies of the oscillations predicted by this stability 
analysis for the velocities w and v are approximately 170 and 200 Hz, respectively. 

10 2 
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These values are in good agreement with the fundamental frequency 200Hz 
observed in the simulation, supporting the argument that the inviscid instabilities of 
inflexional velocity profiles of the streamwise velocity initiate the transition to  
turbulence in Gortler flow. 

We were unable to observe in the simulations the frequency 130 Hz, which was 
observed in the experiment (Swearingen & Blackwelder 1987). Inspection of figures 
13 and 14 reveals that the frequency 130Hz is associated with the spanwise 
wavelength 2.5 em. It therefore appears that we are unable to reproduce this 
frequency in our simulations because the streamwise size of the computational box 
is only 2.0 em. 

The most serious disagreement between the simulations and the above stability 
analysis is the fact that the instability mode observed in the simulations is not the 
one with the largest growth rate, which occurs for the wavelength about 1 .O em, and 
could be accommodated by the computational box. Moreover, the growth rate of 
modes with the observed wavelength 2.0 em, developing on the vertical profiles, is 
greater than the growth rate for the spanwise profiles. This is contrary to the 
observation that the spanwise oscillations precede the vertical oscillations and 
disagrees with the results of the similar analysis of Sabry et al. (1990). However, their 
analysis was performed using one-dimensional velocity profiles at the earlier location 
X = 90 em where the profiles are less distorted than at  the location X = 98 em used 
in our work and consequently may result in different stability characteristics of the 
flow. Taken together, these results and controversies point to serious limitations of 
such a simplified stability analysis which depends on a somewhat arbitrary choice of 
characteristic velocity profiles. Nevertheless, with judicious choices some of the 
observed features of the flow instability can be predicted correctly. 

Another simplified approach to the stability analysis of Gortler flow was proposed 
recently by Park & Huerre (1992). Assuming that the growth rate of the primary 
Gortler instability is much smaller than that of the instability produced by 
inflexional profiles, they use the flow field generated during an evolution of a two- 
dimensional Gortler flow as a basic flow and study its stability properties. Secondary 
instabilities of sinuous and varicose mode were discovered by integrating a linearized 
Navier-Stokes equations until a temporal trend e(iw+'i)t is achieved, where w, is the 
phase speed and wi is the growth rate of the secondary instability. Their results show 
that both sinuous and varicose modes have much larger growth rates than the 
Gortler instability and the sinuous mode has a larger growth rate than the varicose 
mode. In  our case the spanwise inflexional velocity profiles are responsible for the 
generation of sinuous modes and the vertical profiles are responsible for the 
generation of varicose modes. Thus the simulation results and our simplified stability 
analysis are broadly consistent with their conclusions. 

3.4. Secondary instabilities and structural features of the velocity field 
In  the following discussion we decompose the total velocity field, denoted previously 
as u(x, y, z ) ,  in the following manner: 

U(x ,y , z )  = U&)+ U g ( y J ) + ~ ( x , Y , z ) ,  (25) 

where 
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Here, U(x,  y, z )  is the total velocity, U,,(z) is a basic flow which is the average of the 
total velocity taken over horizontal plane and is a function of the vertical coordinate 
z only, U,(y,z) is the Gortler velocity obtained as the average of the total velocity 
field taken over lines in the x-direction, with the basic flow U,, subtracted, and 
u(x, y, z )  signifies now only the fluctuating velocity component. Non-zero velocity 
U,(y,z) results from the primary Gortler instability of the base flow Ua(z), and 
u(x, y, x )  is the velocity perturbation resulting from the secondary instability of 
the two-dimensional Gortler flow U,+ U,. We will use this decomposition and 
notation throughout the remainder of this paper. Similar definitions of averaged 
velocities were also used by Moser & Moin (1987) in their investigation of turbulent 
curved channel flow. 

Note that for laminar Gortler flow the quantity u(x,  y, z )  vanishes and thus it can 
serve as a useful measure of the departure of the flow from a purely two-dimensional 
laminar state. Another indicator of the transition is the streamwise vorticity of the 
flow. In fully turbulent flows the r.m.s. values of the three fluctuating vorticity 
components are of the same order of magnitude. However, as pointed out by 
Blackwelder (1988), in laminar Gortler flow the streamwise vorticity component w, 
is much smaller than either the spanwise component wy or the vertical component w,. 
This is because the velocity components V and W that contribute to the streamwise 
vorticity are smaller than the streamwise velocity component U by a factor equal to 
Reynolds number (DiPrima & Stuart, 1972). Therefore a significant increase in the 
values of w, during the evolution of Gortler flow can serve as another useful measure 
of the departure of the flow from a purely laminar state. Both these measures were 
used in our work to identify the flow regions where secondary instabilities set in and 
the relation between these regions and the inflexional velocity profiles was 
investigated. 

Figure 15 shows iso-contours of the r.m.s. values of the fluctuating streamwise 
velocity component : 

and figure 16 shows iso-contours of the streamwise vorticity component w,, both 
quantities obtained in run B and plotted in the (y, 2)-plane a t  the streamwise location 
X = 100 em. Results in figure 15 are in all essential aspects similar to the 
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FIGURE 17. Tso-contours of gradients of the streamwise velocity component U in the (y, z)-plane at 
X = 100 cm in run B. Contours are normalized with the average of (aU/az), at the wall and their 
increment level is 0.1. (a)  Iso-contours of shear aU/ay. ( b )  Iso-contours of shear aU/az. 

experimental results of Swearingen & Blackwelder (1987) for the same quantity, 
shown in figure 16 in their paper. Both u,,, and w, are characterized by the presence 
of the largest values in the stem of the ‘mushroom ’ and smaller, local maxima on the 
sides of the ‘mushroom’s’ hat. The vorticity also departs from zero in the region at 
the top of the ‘mushroom’s’ hat. 

In order to establish the relation between these quantities and the inflexional 
velocity profiles we computed and plotted the derivatives of the streamwise velocity 
U since the inflexion points are usually associated with the presence of strong 
spanwise and vertical shears of U. The instantaneous spanwise shear aU/ay, and the 
vertical shear aU/az are shown in figures 17(a)  and 17(b) ,  respectively. Shears are 
normalized by the average value of aU/az a t  the wall. Both quantities are again in 
close agreement with the experimental results of Swearingen & Blackwelder (1987) 
(see figure 18 in their paper). Examination of these results reveals that the large 
values of u,,, and w, correlate much better with the regions of large spanwise shear, 
aillay, than with the regions of large vertical shear, aU/az. A particularly high level 
of correlation is observed between u,,, and aU/ay. 

Customarily, regions of large vertical shear aU/az associated with the inflexional 
points on the vertical profiles of streamwise velocity are considered to  be a primary 
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cause of the transition process. In  our results, however, the region of large vertical 
shear away from the wall (figure 1 7 b )  does not correlate very well with the regions 
of large u,,,, indicating that very little of the turbulent energy production is caused 
by it. It is nevertheless responsible for the appearance of the three-dimensional 
effects since its correlation with w, is significant. Therefore, our results indicate that 
in the transition process the regions of large spanwise shear aU/ay may play a greater 
role than the regions of large vertical shear aU/az. This conclusion is thus fully 
consistent with the experimental results of Swearingen & Blackwelder (1987) who 
showed a large degree of correlation between the regions of large spanwise shear and 
the regions of large streamwise velocity fluctuations. It appears that  their work was 
the first investigation which systematically assessed the role of the spanwise and the 
vertical shears in the transition in wall-bounded flows and established the importance 
of the spanwise shear in this process. 

Iso-contours of the streamwise velocity U in the (x, y)-plane for the initial phases 
of the transition and towards the end of run B, when the flow became more turbulent, 
are shown in figure 18. Associated iso-contours of the spanwise velocity V and the 
vertical velocity Win the (x,y)-plane are shown in figures 19 and 20, respectively. 
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The departure from a purely two-dimensional flow is marked by the appearance of 
spanwise oscillations with a wavelength equal to the streamwise extent of the 
computational domain. The oscillations start in the low-speed region at  z M 0.58, 
where the spanwise shear aU/ay reaches values close to the maximum. This fact 
provides additional evidence of the importance of spanwise shear in the transition 
process. 

By examining figure 20 we note that although only one wavelength of the 
perturbation is present in the computational domain, a t  several vertical locations x ,  
two positive and two negative regions of the vertical velocity are seen while 
traversing the low-speed region (y = 0.9 cm) in the x-direction. However, while 
traversing the computational domain in the off-centre y-location one encounters only 
one positive and one negative region. Therefore, the frequencies of the W oscillations 
recorded by fixed probes a t  these two different spanwise locations will differ by a 
factor of two, with higher frequencies recorded in the low-speed region. This fact 
serves as the explanation of the difference between frequencies in the time series 
recorded in the simulations at different spanwise locations (53.3). Such behaviour is 
typical for wake flows experiencing instabilities and was first observed by Kovasznay 
(1949) for a wake behind a cylinder. 
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Associated iso-contours of the spanwise velocity V in the (x, 2)-plane located in the 
low-speed region are shown in figure 21. In  figure 22 iso-contours of the vertical 
velocity component W in the (x,z)-plane in the low-speed region for run B are 
presented. The oscillations in the vertical direction appear later than those in the 
spanwise direction. For instance, at the location X = 89.8 em from the leading edge 
we do not observe any oscillations in the vertical direction even though the spanwise 
oscillations are already present (see figure 21). Periodic positive and negative regions 
of W ,  indicative of the oscillations in the vertical direction, appear a t  a larger 
distance from the leading edge, around X = I00 em. 

The two neighbouring regions of positive and negative values of W a t  X = 
102.5 em in figure 22 may be interpreted as a signature of a vortex aligned in the 
spanwise direction. It seems that it is possible to  interpret such a vortex as a head 
of a hairpin vortex which is connected to the streamwise vortex pair on the sides of 
the ‘mushroom’ region. Indeed, it is seen in figure 16 that the streamwise vorticity 
w, has positive and negative peaks on both sides of the low-speed region at z x 0.86. 
They could be attributed to the presence of the streamwise legs of the hairpin 
vortices. Figures 23(a) and 2 3 ( b )  show the iso-surfaces of vorticity, with the 
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contribution from the base flow V,,(z) excluded, for runs A and B, respectively. I n  
both cases a wavy region of concentrated vorticity in the low-speed region a t  the wall 
is observed. Away from the wall, the three dimensional vorticity structure exhibits 
very clearly a series of connected hairpin vortices in run A, though the vortices are 
less pronounced in run B. The spanwise vortices are associated with the varicose 
mode of the secondary instability and the high-vorticity structure at the wall is 
associated with the sinuous mode of the secondary instability. 

3.5. Kinetic energy balance analysis 
The kinetic energy balance analysis is often used in studying turbulence phenomena. 
Usually, in the kinetic energy balance analysis for turbulent boundary-layer flows 
(including flows over concave walls or in a curved channel) an assumption of 
statistical homogeneity in the horizontal planes is made and the mean flow is 
considered to be a function of z only as, for instance, in Moser & Moin (1987). 
However, because of the presence of the Gortler vortices in the flow considered here, 
the assumption of statistical homogeneity in the spanwise direction is clearly 
erroneous. Therefore, it may be very important to account explicitly for this 
inhomogeneity in the energy balance analysis if some important features of the 
energetics of the flow are not to be missed. For this reason we take here as the mean 
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flow the sum of the basic flow Ub(z), which is the function of z only, and the Gortler 
vortical flow U,(y,z), which is the function of both y and z. Turbulent velocity is 
identified as the perturbation u(x, y, z )  to this mean field and averages in the 
derivation of the kinetic energy balance equation are taken over lines in the x- 
direction, in which turbulent quantities are expected to be statistically homogeneous. 

With this averaging procedure we use a standard method of deriving the kinetic 
energy balance equation (e.g. Monin & Yaglom 1971). Because of the wall curvature 
many 'extra' terms, which are not present in the corresponding equations for a flat- 
plate boundary layer, appear in the equation for Gortler flow. It has the following 
form in the curvilinear coordinate system used: 

production 

convection 

turbulent diffusion 

pressure redistribution 

viscous diffusion 

dissipation 

where q2 = +(w2 + w 2  + w 2 )  is the perturbation energy, h = 1 - K Z ,  and the overbar 
denotes averaging over lines in the x-direction. The terms on the right-hand side of 
(29) are functions of the variables y and z. 

We are interested mostly in identifying the turbulent energy production 
mechanisms in the transition process and our analysis will concentrate on the 
production term which describes how the perturbation energy is produced by 
Reynolds stresses working against the basic flow and the Gortler vortical flow. The 
production term consists of five sub-terms, each describing the contributions that 
various components of the mean shear make to the turbulent energy production. 
Figures 24(a) and 24(b) show iso-contour plots of -m(aU,/az+ ( ~ / h )  U,) and 
-m(dU,/az+ ( ~ / h )  U g ) ,  respectively, for run B at X = 98 cm. Both these terms 
describe the turbulent energy production caused by instabilities of the vertical 
velocity profiles of the basic flow U,(z) and the Gortler component Ug(y,z), 
respectively. This mechanism is most effective away from the wall, on the sides of the 
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FIGURE 22. As figure 21 but for the vertical velocity W 

'mushroom' structure, and is apparently associated with the varicose mode of the 
secondary instability. Both these terms are of the same order of magnitude, and 
when integrated over the whole plane, they make comparable contributions to the 
overall energy production. The term -maU,/ay is plotted in figure 24(c).  It 
describes the energy production caused by instabilities of the spanwise velocity 
profiles and its maximum value is greater by the factor 20 than the maxima in the 
two previous plots. I ts  integral contribution to the total energy production is one 
order of magnitude greater than combined contributions of all remaining terms. The 
production mechanism described by this important term is most effective in the low- 
speed region, at the distance x x 0.58 from the wall, where the largest spanwise shear 
is present and where the sinuous mode of the secondary instability originates. 
Indeed, in figure 24(c) the regions of large production correlate very well with the 
regions of large spanwise shear (figure 17a), and similarly, in figures 24 ( a )  and 24(b) 
the production terms correlate well with the regions of large vertical shears (figure 
17b). The two remaining turbulent energy production terms, associated with the 
gradients of the spanwise, V,, and the normal, W,, Gortler velocity components were 
found to contribute negligibly to  the production (Liu 1991) and are not discussed 
here. 

The major conclusion from the analysis of the turbulent energy production term 
for the Gortler flow is that the dominant energy production mechanisms in the 
transition process are instabilities of the wake-like shear layer located in the upwash 
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region between the vortices. This result provides additional evidence supporting the 
assertion that spanwise shear plays a more important role in the initial phases of the 
transition process than vertical shear. 

It should be noted that the importance of spanwise shear in turbulent energy 
production could not be easily established if the customary averaging over horizontal 
planes were used in deriving the kinetic energy balance equation. With such an 
averaging procedure the sum u’(x, y, x )  = U&y, x )  + u(z, y, x )  is treated as a fluctuating 
velocity and Ub(z) is a basic flow, resulting in the following form of the energy 
production term : 

(30) 

with no dependence on the spanwise direction y. It may be expected that similar 
difficulties will be encountered in describing any turbulent flow which contains long- 
lived coherent structures. Including the velocity associated with the coherent 
structures into the definition of the fluctuating turbulent velocity may obscure some 
important physics of the flow. 

3.6. Weakly turbulent regime 
In figure 5,  at the end of run B, the average boundary-layer displacement thickness 
and the average vertical gradient of the streamwise velocity measured in the low- 
speed region and in the high-speed region approach the same values, which is 
indicative of the flow becoming weakly turbulent. 

Figure 25 shows iso-contours of the total streamwise velocity and r.m.s. values of 
the turbulent streamwise velocity component in the (y, 2)-plane a t  the end of run B. 
These, as well as all other physical quantities we investigated, have their maxima 
near the wall. Therefore, this region located within distance 0.256 from the wall 
seems to be responsible for most of the subsequent turbulence production. Also, in 
the final stages of the simulations, distinctive S-shaped inflexional velocity profiles 
and the associated local vertical and horizontal shear layers are destroyed by 
turbulence, thereby losing capability to  cause further instabilities. 

It is interesting to note in figure 25(a)  that the streamwise velocity shows two 
small ‘mushroom’ structures near the wall, one in the original low-speed region and 
the other one in the original high-speed region. Similar structures can also be found 
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in figure 25 ( 6 ) .  One may speculate that additional flow instabilities in the vicinity of 
the wall in the turbulent regime are responsible for the generation of these structures. 
However, we have not investigated the turbulent regime further. 

4. Conclusions 
Investigations of counter-rotating vortices occurring in Gortler flow are very 

helpful in understanding the dynamics of similar vortices encountered in transitional 
and turbulent wall-bounded flows. A numerical code to simulate Gortler flow has 
been developed and it was demonstrated that the code can accurately predict the 
linear growth rates of the primary Gortler vortices and is capable of generating the 
Gortler vortices naturally from the background noise. The direct numerical 
simulations results for the evolution of three-dimensional Gortler flow are in a good 
qualitative and quantitative agreement with a number of experimental results. 
Inflexional velocity profiles of the streamwise velocity, generated by the action of the 
counter-rotating vortices, are found in the simulations both in the spanwise and in 
the vertical directions. A standard stability analysis performed for such one- 
dimensional velocity profiles indicates that their secondary instabilities are the main 
mechanism of the transition to turbulence in such flows. The numerical results 
convincingly show that the spanwise inflexional profile and the associated shear 
al i lay play a more important role in the transition process than the vertical 
inflexional profile and the shear afJlaz, which are conventionally considered the main 
cause of the transition. After the transition process begins, velocity oscillations in the 
spanwise and vertical directions with distinct frequencies can be observed in the 
simulations. The spanwise oscillations appear first and are associated with a sinuous 
motion of the unstable low-speed streaks. The vertical oscillations are observed later 
than the spanwise oscillations and are associated with the appearance of a varicose 
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mode of the secondary instability in the form of hairpin vortices. Close to the 
transition point a three-dimensional vorticity structure suggests a series of such 
connected hairpin vortices in the outer regions of the boundary layer. However, in 
the transition process these hairpin vortices play an apparently smaller role than the 
streamwise vortical structure which develops in the vicinity of the wall in the low- 
speed region between the Gortler vortices. The analysis of the kinetic energy balance 
equation, which takes into account spanwise inhomogeneity of the mean flow, shows 
that the production term arising from the spanwise shear induced by the Gortler 
vortices is much larger than the production terms arising from the interaction of 
turbulence with the vertical shear, reinforcing conclusions about the importance of 
the spanwise variations of the flow on the transition process. At the end of 
simulations we find that almost all physical quantities have maximum values near 
the wall. 
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